Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Carbohydr Polym ; 335: 122067, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616090

RESUMO

Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.

2.
J Bioinform Comput Biol ; 22(1): 2350030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38567388

RESUMO

The accurate identification of drug-target affinity (DTA) is crucial for advancements in drug discovery and development. Many deep learning-based approaches have been devised to predict drug-target binding affinity accurately, exhibiting notable improvements in performance. However, the existing prediction methods often fall short of capturing the global features of proteins. In this study, we proposed a novel model called ETransDTA, specifically designed for predicting drug-target binding affinity. ETransDTA combines convolutional layers and transformer, allowing for the simultaneous extraction of both global and local features of target proteins. Additionally, we have integrated a new graph pooling mechanism into the topology adaptive graph convolutional network (TAGCN) to enhance its capacity for learning feature representations of chemical compounds. The proposed ETransDTA model has been evaluated using the Davis and Kinase Inhibitor BioActivity (KIBA) datasets, consistently outperforming other baseline methods. The evaluation results on the KIBA dataset reveal that our model achieves the lowest mean square error (MSE) of 0.125, representing a 0.6% reduction compared to the lowest-performing baseline method. Furthermore, the incorporation of queries, keys and values produced by the stacked convolutional neural network (CNN) enables our model to better integrate the local and global context of protein representation, leading to further improvements in the accuracy of DTA prediction.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação
3.
Water Sci Technol ; 89(6): 1482-1496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557713

RESUMO

The issue of water scarcity has drawn attention from all over the world. The coordination of the interaction between ecological and environmental development of water sources and socio-economic development is currently an essential issue that needs to be solved in order to safeguard the water resources environment for human survival. In this essay, we suggest a paradigm for assessing the sustainable exploitation of water resources. First, three ecological, economic, and social factors are investigated. Twenty essential evaluation indexes are then constructed using the Delphi approach, along with an index system for assessing the potential of water sources for sustainable development. The weights of each evaluation index were then determined using the combination assignment approach, which was then suggested. The coupled degree evaluation model of the capability for sustainable development of water sources was then developed. In order to confirm the viability and validity of the suggested model, the model was used to assess the Liwu River water source's capacity for sustainable growth in the context of the South-North Water Transfer in Shandong, China. It is believed that the aforementioned study would serve as a helpful resource when evaluating the capacity of water sources for sustainable development.


Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Sustentável , Humanos , Água , Recursos Hídricos , China , Desenvolvimento Econômico , Cidades
4.
Polymers (Basel) ; 16(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543366

RESUMO

A thin, lightweight and flexible electromagnetic interference (EMI) shielding paper composite is an urgent need for modern military confrontations. Herein, a sandwich-structured EMI shielding paper composite with an easy pavement consisting of a filter paper layer, middle AgNWs/MXene layer, and polyvinyl butyral (PVB) layer was constructed by vacuum-assisted filtration, spraying and air-drying. The middle AgNWs/MXene compound endowed the filter paper with excellent electrical conductivity (166 S cm-1) and the fabricated filter paper-AgNWs/MXene-PVB composite exhibits superior EMI shielding (30 dB) with a 141 µm thickness. Remarkably, the specific EMI shielding effectiveness (SSE/t) of the filter paper-AgNWs/MXene-PVB composite reached 13,000 dB cm2 g-1 within the X-band frequency range. This value represents one of the highest reported for cellulose-based EMI shielding materials. Therefore, our sandwich-structured filter paper composite with superior EMI shielding performance can be used in the medical and military fields.

5.
Adv Colloid Interface Sci ; 326: 103142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555834

RESUMO

Amidst the burgeoning interest in multifunctional superhydrophobic wood-based composites (SWBCs) for their varied applications and the need for improved environmental resilience, recent efforts focus on enhancing their utility by integrating features such as mechanical and chemical stability, self-healing capabilities, flame resistance, and antimicrobial properties. Research indicates that various external conditions can influence the wettability and additional characteristics of SWBCs. This comprehensive review outlines three critical factors affecting SWBCs' performance: synthesis methods, wood taxonomy, and chemical agents. It further provides a detailed overview of SWBCs' specific attributes, including essential qualities for diverse applications and the limitations posed by different contexts. Additionally, it elaborates on performance evaluation techniques, offering a foundational framework for SWBCs' practical application. This work aims to serve as an important resource for future research and development in SWBC engineering.

6.
J Org Chem ; 89(4): 2605-2621, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38315164

RESUMO

A practical base-promoted tandem condensation N-alkylation reaction for the formation of trisubstituted hydrazones has been developed employing aldehydes and hydrazines with alkyl halides. Crucially, this reaction successfully overcomes chemoselectivity problems, allowing for the reaction of multiple components in a one-pot manner. Halo- and heterofunctional groups, as well as free hydroxyl and amino groups, are tolerated in this transformation to produce a wide range of trisubstituted hydrazones in good to excellent yields.

7.
J Colloid Interface Sci ; 660: 923-933, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280285

RESUMO

The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 µWh cm-2 at 1101.7 µW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.

8.
Carbohydr Polym ; 329: 121777, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286548

RESUMO

Developing high-performance microwave absorption (MA) materials becomes an urgent concern in the field of electromagnetic protection. Constructing porous framework is an efficient approach to MA owing to the abilities of adjusting impedance matching and providing more reflection and scattering paths for electromagnetic waves. Herein, a cellulose nanofibril (CNF)/honeycomb-like carbon-shell encapsulated FeCoNi@C/carbon nanotube (CNT) composite aerogel was fabricated via a facile freeze-drying method. The super-lightweight composites showed a distinctive gradient structure for reflection and scattering inside aerogel pores, micrometer small pores, and nano-fillers on the pore walls. The composite aerogel showed an ideal minimum reflection loss (RLmin) of -43.6 dB and remarkable adjustable effective absorption bandwidth (EAB) of 12.18 GHz due to good impedance matching, unique gradient porous structure, and synergies of multiple loss mechanisms. Therefore, this work will provide a viable strategy to improve the MA capability of absorbers by taking full advantage of constructing gradient reflection and scattering porous structure.

9.
Int J Biol Macromol ; 259(Pt 2): 129268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199536

RESUMO

With the rapid development of the Internet of Things, nanogenerator as a green energy collection technology has attracted great attention in various fields. Specifically, the natural renewable nanocellulose as a raw material can significantly improve the environmental friendliness of the nanocellulose-based nanogenerators, which also makes the nanocellulose based nanogenerators expected to further develop in areas such as wearable devices and sensor networks. This paper mainly reports the application of nanocellulose in nanogenerator, focusing on the sensor. The types, sources and preparation methods of nanocellulose are briefly introduced. At the same time, the special structure of nanocellulose highlights the advantages of nanocellulose in nanogenerators. Then, the application of nanocellulose-based nanogenerators in sensors is introduced. Finally, the future development prospects and shortcomings of this nanogenerator are discussed.


Assuntos
Internet , Dispositivos Eletrônicos Vestíveis , Tecnologia
10.
ChemSusChem ; : e202301703, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180149

RESUMO

Exploration of greatly efficient and steady non-noble oxygen evolution reaction (OER) electrocatalysts is of great significance in improving the overall efficiency of energy density systems such as regenerative fuel cells, water electrolyzes, and metal-air batteries. Herein, inspired by hierarchical 3D porous structures with open microchannels of natural wood, CoO@NiFe LDH sandwich-like nanosheets were anchored on the carbonized wood (CW) via electrodeposition and calcination strategies. The strong interactions between CoO nanosheets and NiFe LDH nanosheets endow CoO@NiFe LDH/CW electrocatalyst with high catalytic properties toward the OER comparable to CoO/CW and NiFe LDH/CW. The optimized CoO@NiFe LDH/CW electrocatalyst demonstrates good OER catalytic performance with an overpotential of 230 mV at 100 mA cm-2 . This work presents an innovative approach to utilize renewable resources for constructing advanced free-standing catalysts.

11.
Int J Biol Macromol ; 254(Pt 3): 127997, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949262

RESUMO

Nanocellulose, as a nanoscale polymer material, has garnered significant attention worldwide due to its numerous advantages including excellent biocompatibility, thermal stability, non-toxicity, large specific surface area, and good hydrophilicity. Various methods can be employed for the preparation of nanocellulose. Traditional approaches such as mechanical, chemical, and biological methods possess their own distinct characteristics and limitations. However, with the growing deterioration of our living environment, several green and environmentally friendly preparation techniques have emerged. These novel approaches adopt eco-friendly technologies or employ green reagents to achieve environmental sustainability. Simultaneously, there is a current research focus on optimizing traditional nanocellulose preparation methods while addressing their inherent drawbacks. The combination of mechanical and chemical methods compensates for the limitations associated with using either method alone. Nanocellulose is widely used in wound dressings owing to its exceptional properties, which can accelerate the wound healing process and reduce patient discomfort. In this paper, the principle, advantages and disadvantages of each preparation method of nanocellulose and the research findings in recent years are introduced Moreover, this review provides an overview of the utilization of nanocellulose in wound dressing applications. Finally, the prospective trends in its development alongside corresponding preparation techniques are discussed.


Assuntos
Celulose , Polímeros , Humanos , Celulose/química , Estudos Prospectivos , Bandagens , Cicatrização
12.
Small ; : e2306794, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072816

RESUMO

Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, ß-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+ , respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.

13.
J Anim Sci Biotechnol ; 14(1): 144, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964337

RESUMO

BACKGROUND: In the modern sheep production systems, the reproductive performance of ewes determines the economic profitability of farming. Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes. Hu sheep, a high-quality Chinese sheep breed, is known for its high fecundity and is often used as a model to study prolificacy traits. In the current study, animals were divided into two groups according to their delivery rates in three consecutive lambing seasons (namely, the high and low reproductive groups with ≥ 3 lambs and one lamb per season, n = 3, respectively). The ewes were slaughtered within 12 h of estrus, and unilateral ovarian tissues were collected and analyzed by 10× Genomics single-cell RNA sequencing. RESULTS: A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group. Noticeably, the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells. Furthermore, four granulosa cell subtypes were identified. GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells. Additionally, the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher. These genes inhibit necroptosis and ferroptosis of mural granulosa cells, which helps prevent follicular atresia. CONCLUSIONS: This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep. The differences in gene expression profiles, particularly in the granulosa cells, suggest that these cells play a critical role in female prolificacy. The findings also highlight the importance of genes such as JPH1, LOC101112291, FTH1, and FTL in regulating granulosa cell function and follicular development.

14.
Heliyon ; 9(11): e21625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027668

RESUMO

Speech recognition is the foundation of human-computer interaction technology and an important aspect of speech signal processing, with broad application prospects. Therefore, it is very necessary to recognize speech. At present, speech recognition has problems such as low recognition rate, slow recognition speed, and severe interference from other factors. This paper studied speech recognition based on dynamic time warping (DTW) algorithm. By introducing speech recognition, the specific steps of speech recognition were understood. Before performing speech recognition, the speech that needs to be recognized needs to be converted into a speech sequence using an acoustic model. Then, the DTW algorithm was used to preprocess speech recognition, mainly by sampling and windowing the speech. After preprocessing, speech feature extraction was carried out. After feature extraction was completed, speech recognition was carried out. Through experiments, it can be found that the recognition rate of speech recognition on the basis of DTW algorithm was very high. In a quiet environment, the recognition rate was above 93.85 %, and the average recognition rate of the 10 selected testers was 95.8 %. In a noisy environment, the recognition rate was above 91.4 %, and the average recognition rate of the 10 selected testers was 93 %. In addition to high recognition rate, DTW based speech recognition also had a very fast speed for vocabulary recognition. Based on the DTW algorithm, speech recognition not only has a high recognition rate, but also has a faster recognition speed.

15.
Polymers (Basel) ; 15(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896308

RESUMO

Mildly delignified wood showed a well-preserved wood cell wall framework, and its derived compressed materials demonstrate excellent mechanical properties and advanced functional material potential. Here, we proposed a simple yet effective approach for making strong, tough, and fire-retardant wooden laminate by a three-step process of mild delignification, infiltrating potassium nonafluoro-1-butanesulfonate (PFBS), and hot-pressing to densify the material. PFBS can be infiltrated into the micro/nano-structures of the mildly delignified wood to achieve a good flame-resistant protective barrier. Flame retardant tests showed that this strong, tough, and fire-retardant wooden laminate has a superior flame-retardant performance to natural wood. Additionally, the wooden laminate also exhibits a simultaneously enhanced tensile strength (175.6 MPa vs. 89.9 MPa for natural wood) and toughness (22.9 MJ m-3vs. 10.9 MJ m-3 for natural wood). Given these attributes, the resulting wooden laminates are identified as promising candidates for high-performance structural applications, fulfilling stringent requirements for both mechanical resilience and flame-retardant efficacy.

16.
BMC Psychol ; 11(1): 343, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853470

RESUMO

BACKGROUND: Physical activity (PA) is known to positively affect individuals' mental and physical health, especially those who experience high levels of stress, such as teachers. Previous studies have examined the relationship between teachers' PA, mental health, and well-being. Still, there is a lack of research on the direct and indirect effects of PA and self-efficacy. PURPOSE: This study aimed to investigate the structural relationship between teachers' PA, mental health, well-being, and self-efficacy among ESL/EFL teachers. A total of 364 Chinese English language teachers were selected through convenience sampling. Mental health, physical activity, psychological well-being, and self-efficacy instruments were used. METHODOLOGY: The data was analyzed using Smart PLS software, and the hypothesized model was evaluated. The results indicated an acceptable level of divergent and convergent validity and goodness of fit. RESULTS: The findings revealed that PA directly predicts teachers' mental health and well-being, but the direct structural relationship between teachers' PA and self-efficacy was not confirmed. However, the results showed that teachers' PA contributes to their self-efficacy by enhancing their mental and psychological well-being. The total effect of teachers' PA on their self-efficacy was significant. Additionally, mental health and psychological well-being strongly influenced teachers' self-efficacy. CONCLUSION: In conclusion, regular weekly physical activity can help EFL/ESL teachers foster their mental health, psychological well-being, and self-efficacy. These findings have theoretical and practical significance for teachers, trainers, and educational psychologists.


Assuntos
Exercício Físico , Saúde Mental , Bem-Estar Psicológico , Professores Escolares , Autoeficácia , Humanos , Povo Asiático/psicologia , Exercício Físico/psicologia , Bem-Estar Psicológico/psicologia , Professores Escolares/psicologia , Multilinguismo
17.
Polymers (Basel) ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835953

RESUMO

Due to the rapid development of intelligent technology and the pursuit of green environmental protection, responsive materials with single response and actuation can no longer meet the requirements of modern technology for intelligence, diversification, and environmental friendliness. Therefore, intelligent responsive materials have received much attention. In recent years, with the development of new materials and technologies, cellulose materials have become increasingly used as responsive materials due to their advantages of sustainability and renewability. This review summarizes the relevant research on cellulose-based intelligent responsive materials in recent years. According to the stimuli responses, they are divided into temperature-, light-, electrical-, magnetic-, and humidity-responsive types. The response mechanism, application status, and development trend of cellulose-based intelligent responsive materials are summarized. Finally, the future perspectives on the preparation and applications of cellulose-based intelligent responsive materials are presented for future research directions.

18.
Environ Int ; 180: 108205, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717520

RESUMO

Perfluorinated compounds (PFCs) and their short-chain derivatives are contaminants found globally. Adsorption research on volatile perfluorinated compounds (VPFCs), which are the main PFCs substances that undergo transfer and migration, is particularly important. In this study, new fluorine-containing tail materials (FCTMs) were prepared by combining fluorine-containing tail organic compounds with modified glass fibers. The adsorption effects of these FCTMs were generally stronger than that of pure activated glass fibers without fluorine- tailed, with an adsorption efficiency of up to 86% based on F-F interactions. The results showed that the FCTMs had improved desorption efficiency and reusability, and higher adsorption efficiency compared with that of polyurethane foam. FTGF was applied to the active sampler, and the indoor adsorption of perfluorovaleric acid was up to 2.45 ng/m3. The adsorption kinetics and isotherm simulation results showed that the adsorption process of typical perfluorinated compounds conformed to the second-order kinetics and Langmuir model. Furthermore, Nuclear Magnetic Resonance (NMR) results showed that the chemical shift in the fluorine spectrum was significantly changed by F-F interactions. This research provides basic theoretical data for the study of VPFCs, especially short-chain VPFCs, facilitating improved scientific support for the gas phase analysis of VPFCs in the environment.

19.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762468

RESUMO

Supercapacitors, with high energy density, rapid charge-discharge capabilities, and long cycling ability, have gained favor among many researchers. However, the universality of high-performance carbon-based electrodes is often constrained by their complex fabrication methods. In this study, the common industrial materials, zinc gluconate and ammonium chloride, are uniformly mixed and subjected to a one-step carbonization strategy to prepare three-dimensional hierarchical porous carbon materials with high specific surface area and suitable nitrogen doping. The results show that a specific capacitance of 221 F g-1 is achieved at a current density of 1 A g-1. The assembled symmetrical supercapacitor achieves a high energy density of 17 Wh kg-1, and after 50,000 cycles at a current density of 50 A g-1, it retains 82% of its initial capacitance. Moreover, the operating voltage window of the symmetrical device can be easily expanded to 2.5 V when using Et4NBF4 as the electrolyte, resulting in a maximum energy density of up to 153 Wh kg-1, and retaining 85.03% of the initial specific capacitance after 10,000 cycles. This method, using common industrial materials as raw materials, provides ideas for the simple preparation of high-performance carbon materials and also provides a promising method for the large-scale production of highly porous carbons.


Assuntos
Carbono , Gluconatos , Porosidade , Cloreto de Amônio
20.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764348

RESUMO

A fluorescent and colorimetric poly (acrylamide)-based copolymer probe P(AAm-co-RBNCH) has been designed via free radical polymerization of a commercial acrylamide monomer with a rhodamine-functionalized monomer RBNCH. Metal ion selectivity of RBNCH was investigated by fluorescence and colorimetric spectrophotometry. Upon addition of Fe3+, a visual color change from colorless to red and a large fluorescence enhancement were observed for the ring-opening of the rhodamine spirolactam mechanism. The monomer gives a sensitive method for quantitatively detecting Fe3+ in the linear range of 100-200 µM, with a limit of detection as low as 27 nM and exhibiting high selectivity for Fe3+ over 12 other metal ions. The hydrogel sensor was characterized by FTIR, and the effects of RBNCH amount on gel content and swelling properties were explored. According to the recipe of 1.0 mol% RBNCH to the total monomers, the fabricated hydrogel sensor displayed a good swelling property and reversibility performance and has potential for application in the imaging of Fe3+ level in industrial wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...